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a b s t r a c t 

Considering the proliferation of extremely high-dimensional data in many domains including computer 

vision and healthcare applications such as computer-aided diagnosis (CAD), advanced techniques for re- 

ducing data dimensionality and identifying the most relevant features for a given classification task such 

as distinguishing between healthy and disordered brain states are needed. Despite the existence of many 

works on boosting the classification accuracy using a particular feature selection (FS) method, choos- 

ing the best one from a large pool of existing FS techniques for boosting feature reproducibility within a 

dataset of interest remains a formidable challenge to tackle. Notably, a good performance of a particular 

FS method does not necessarily imply that the experiment is reproducible and that the features iden- 

tified are optimal for the entirety of the samples. Essentially, this paper presents the first attempt to 

address the following challenge: “Given a set of different feature selection methods { F S 1 , . . . , F S K } , and 

a dataset of interest, how to identify the most reproducible and ‘trustworthy’ connectomic features that 

would produce reliable biomarkers capable of accurately differentiate between two specific conditions?”

To this aim, we propose FS-Select framework which explores the relationships among the different FS 

methods using a multi-graph architecture based on feature reproducibility power, average accuracy , and 

feature stability of each FS method. By extracting the ‘central’ graph node, we identify the most reliable 

and reproducible FS method for the target brain state classification task along with the most discriminative 

features fingerprinting these brain states. To evaluate the reproducibility power of FS-Select, we perturbed 

the training set by using different cross-validation strategies on a multi-view small-scale connectomic 

dataset (late mild cognitive impairment vs Alzheimer’s disease) and large-scale dataset including autistic 

vs healthy subjects. Our experiments revealed reproducible connectional features fingerprinting disordered 

brain states. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Recent studies have shown that neurological disorders such

s Alzheimer’s disease (AD) [1] , autism spectrum disorder (ASD)

2,3] or mild cognitive impairment (MCI) affect the connectional

orphology of the human brain [4–6] . Unraveling the morpholog-

cal connectomics of these neurological and neuropsychiatric dis-

rders [7] can help improve the diagnosis and prognosis of these

onditions. To this aim, various studies leveraged machine learning
∗ Corresponding author at: BASIRA lab, Faculty of Computer and Informatics, 

stanbul Technical University, Istanbul, Turkey. 

E-mail address: irekik@itu.edu.tr (I. Rekik). 
1 http://basira-lab.com/ , GitHub: https://github.com/basiralab/FS-Select , 

ouTube video: https://www.youtube.com/watch?v=9HbLxNef2t8&feature=youtu.be . 
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echniques [4,8,9] as well as graph analysis [2,10] to spot connec-

ions between the healthy and disordered brain [11] . Once these

isordered connections (or features) are identified, they may serve

s biomarkers which can be targeted to improve the detection of

he disease and for effective treatment [12] . 

In bioinformatics, researchers generally use a small sample size

here each sample has a high dimensionality, which might cause

ssues (such as bias) for the target learning task [13,14] . Feature

election (FS) methods have been proposed as a potential solution

o this issue [15] , where a subset of highly relevant features is

xtracted from the dataset of interest to both reduce the dimen-

ionality of the data samples and improve the overall performance

f the classifier [16] . Learning how to effectively and reliably

elect a subset of features with high discrimination power is one

f the fundamental quests of pattern recognition since its early

https://doi.org/10.1016/j.patcog.2019.107183
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2019.107183&domain=pdf
mailto:irekik@itu.edu.tr
http://basira-lab.com/
https://github.com/basiralab/FS-Select
https://www.youtube.com/watch?v=9HbLxNef2t8&feature=youtu.be
https://doi.org/10.1016/j.patcog.2019.107183
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Fig. 1. Diagram of the widely used protocol for identifying the best feature selec- 

tion method for a dataset of interest. (a) Given a dataset of interest D i and a pool of 

feature selection methods { F 1 , . . . , F N } , typical protocols rely on finding the method 

which selects the optimal subset of features S , producing the best classification ac- 

curacy A . However, this overlooks the issue of feature reproducibility, which is fun- 

damental for identifying trustworthy biomarkers in biological and clinical applica- 

tions. (b) Proposed diagram of data-driven protocol for identifying the best feature 

selection method with the most reproducible selected set of features. 
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foundation [17–20] . Feature selection from high-dimensional data

has been extensively studied with a wide spectrum of applications

[21–23] . A growing number of works continue to investigate ex-

isting FS methods in an attempt to select the best FS techique for

their target application [22,24,25] . These showed that the perfor-

mances of FS methods largely varied with the the input datasets

and thus the produced results are influenced by the method

chosen [26,27] . On the other hand, developing a new approach

that would produce the best classification result and identify the

most reliable features for all data types seems to be an intractable

problem. Furthermore, the ongoing proliferation of multi-source

medical data, including structural and functional magnetic reso-

nance imaging (MRI) data collected for the human brain connec-

tome project [28] presents unprecedented challenges to devising

feature selection methods that generate reproducible biomarkers

across different data sources. This is because each data source has

its unique characteristics and statistical distribution that might

not match that of another data source. Hence, identifying the best

feature selection method that unravels the inherent traits of a

particular dataset remains a major challenge. 

However, besides the improvement achieved in the past years

in devising robust and precise FS methods [29] to identify reliable

biomarkers for neurological disorders [30–32] , new challenges

have arisen including instance stability and scalability [33] . Op-

erating on small datasets induces an inevitable variability in the

results [20] . To address this issue, several studies have investigated

the stability of FS algorithms [34] , which measures the robustness

of the selected features to perturbations in the data [35] . A better

resistance to perturbations leads to a better consistency in the

results and thus an improved reproducibility. It explains why sta-

bility is now even considered of the same importance as accuracy

by some papers [36] . Undeniably and especially in bioinformatics,

the results need to be reproducible across patients sharing the

same condition. Each discovered biomarker needs to be repro-

ducible and stable. Being able to rely on a stable FS method that

is ‘optimal’ for a specific dataset and could detect robust, repro-

ducible biomarkers would constitute a radical change for detecting

disordered brain changes through connectomic data. Our hypothe-

sis is that the best performing FS method for a dataset of interest

might not be optimal for a different dataset in both classification

accuracy and feature reproducibility. Basically, the question that we

aim to address in this work is: “Given a series of different feature

selection methods { F S 1 , . . . , F S K } , and a dataset of interest, how to

identify the most reproducible and ‘trustworthy’ connectomic fea-

tures that would produce reliable biomarkers capable of accurately

differentiate between two specific conditions?” ( Fig. 1 ). 

In contrast to methods focusing on boosting the accuracy (or

improving solely the stability [37] ) of FS methods [38] in classi-

fying different brain states, our primary goal is not to maximize

exclusively the performance of the classifier but to identify the

best FS method that will produce reproducible brain features asso-

ciated with a specific brain disorder (i.e., potential biomarkers) for

a dataset of interest. To this aim, we propose FS-Select framework

which models the relationships among the different FS methods

using a multi-graph architecture to identify the most trustworthy

FS method that finds the most reproducible features for a dataset

of interest. In particular, we propose three graphs, modeling

respectively, the relationship between FS methods in reproducibil-

ity, similarity in average accuracy and feature stability of each

FS method for a number of best ranked features (i.e., a ‘feature

threshold’ K ). Ultimately, by integrating all reproducibility, accuracy

similarity and stability graphs, we generate a holistic graph which

allows to identify the central FS method with most reproducible

features in relation to other FS methods in the graph. The weight

of an edge connecting two FS nodes in the final graph represents

the overlap in top K ranked features balanced by accuracy and
tability. This allows to identify, for a dataset of interest, the ‘cen-

ral’ node (the node with the highest strength), which will be used

o identify the most meaningful and reproducible connectomic

eatures for a brain disorder of interest. 

Our framework is simple, intuitive, and presents the first

ttempt to tackle the challenging problem of identifying the most

eproducible biomarkers for different neurological conditions. It is

lso generic and can be applied to any dataset for identifying re-

roducible patterns in the data. The contributions of this paper are

he following: 

• It unprecedentedly solves the problem of identifying the most

reproducible FS method for a dataset of interest by devising a

simple but effective graph-based analysis framework to model

the multifaceted relationships between a set of FS methods. 
• We bring up the importance of investigating the relationship

between different FS methods –an aspect generally neglected

in the quest of the best FS method for a particular dataset of

interest. 
• It introduces the centrality concept rooted in the field of social

sciences into the best data-driven FS identification problem. 
• It is able to identify the most reproducible FS method for both

small and large datasets of interest and discover disordered

brain connectivity biomarkers. 

. Perspective on the issue of feature selection methods and 

eproducibility 

.1. A diverse pool of feature selection methods 

For classification problems, the presence of a huge number of

eatures may lead to an overfitting of the learning model. Hence,

S methods aim to select only highly discriminative features.

epending on the availability of training labels, FS methods can be

rouped into three categories: unsupervised, semi-supervised and

upervised techniques [39] . Unsupervised FS methods may exploit

ata distribution or data variance to evaluate the relevance of

eatures without labels [40–42] . The common drawback of these

pproaches is the neglect of correlation between different features.

emi-supervised methods generally use a small number of labeled
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Fig. 2. Fluctuation of feature selection methods’s performance across different datasets. For each subject, we define connectomic feature vectors, each derived from a 

particular brain view. Since each brain connectivity matrix is symmetric (i.e., connectivity) and self-connections are irrelevant, we only vectorize the off-diagonal upper 

triangular part of each matrix for feature extraction. We train a support vector machine (SVM) classifier using Leave-One-Out (LOO) cross-validation and seven Feature 

Selection (FS) methods on different datasets, each derived from a particular representation (or view) of brain connectivity. The right graph plots the classification accuracy 

of 7 FS methods against different numbers of selected features for brain connectivity dataset derived from view 1 (maximum principal curvature brain view), while the 

left graph plots classification accuracy using the same FS methods for a second dataset derived from view 2 (the mean cortical thickness brain view). We note that the 

performance of different FS methods varies with data types. 
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ata to guide the feature selection process [43–45] . The most dis-

ussed techniques are the supervised feature selection algorithms

46–48] , which use the labeled data to select the most discrimina-

ive features. These techniques are grouped into three categories:

rapper, filter and embedded models, depending on the utility of

he selected features [15] . The first category uses the performance

f a learned model (often a classifier) to identify most discrimi-

ative features [49,50] . Despite their simplicity, wrapper methods

ave a high risk of overfitting. The second category looks only at

he properties of the data such as correlation, dependency and

istance [51,52] . They are more scalable than wrapper methods

n computational complexity. However, they do not consider the

nteraction with the classifier, which might worsen classification
ccuracies. To overcome the high computational training cost of

hese two categories, embedded methods were introduced [53,54] .

hese methods utilize the selected features as part of the training

rocess and model fitting. They are less computationally intensive

han wrapper methods and are able to model the interaction with

he classification model. 

Given this large pool of FS methods, the best performing

ethod on a particular dataset of interest may not show the same

erformances for a different dataset as demonstrated in Fig. 2 . Al-

hough classification accuracy induced by a particular FS method

llows to evaluate the discriminative power of the selected fea-

ures, it does not allow to measure the reproducibility power of the

elected method, which is paramount for biomedical applications
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for developing effective treatments based on the identified poten-

tial biomarkers. 

2.2. Cherry-picking feature selection methods for classification tasks 

Typically, feature selection algorithms for classification tasks are

evaluated through classification accuracy. However, for the same

dataset, different subsets of features can be identified by the same

feature selection algorithm when slightly perturbing the training

dataset (e.g., changing the cross-validation strategy) or other FS

methods that achieve similar predictive accuracy [36] . For appli-

cations which rely on the interpretability of the selected features,

one cannot trust such FS algorithms as they are non-reproducible

and robust against training dataset perturbation. This issue mo-

tivated researchers to seek other evaluation metrics. The closest

measure related to reproducibility is feature selection stability. As

mentioned in [55] , unstable feature selection leads to unstable fea-

ture subsets. Feature selection stability is defined as the sensitivity

of the feature selection process to a small data perturbation in the

training set [56] . Even underlying parameters such as feature di-

mensionality and sample size can greatly affect the stability of an

algorithm [57] , which might decrease our confidence in the results.

More importantly, given a particular dataset of interest and a pool

of FS methods, it remains challenging how to identify ‘the best’

feature selection method for a target classification task. Typically,

such selection criteria are based on simply comparing the classifi-

cation accuracy of different FS methods on the input dataset, then

picking the one with the highest accuracy. This ‘cherry-picking’

might not be effective since the accuracy generally rises and drops

with different cross-validation schemes [27] . On the other hand,

such a widely used protocol might fail to identify reproducible

feature sets across different cross-validations ( Figs. 1–3 ). In this

paper, we propose the first automated framework for automatically

identifying the best FS method in terms of reproducibility . 

3. Proposed FS-Select framework 

In this section, we detail the key steps that constitute FS-

Select framework illustrated in Fig. 3 . FS-Select aims to identify

the FS method that produces ‘the most agreed upon’ features for

distinguishing between two groups drawn from a particular data

of interest, when perturbing the training set. For easy reference,

Table 1 presents the main mathematical notations used to design

FS-Select. 

3.1. FS-to-FS multi-graph construction 

Given a particular dataset of interest, we aim to identify the

best feature selection method that gives the most reproducible and

reliable features allowing to tease apart two classes (e.g., healthy

and disordered brain states). We hypothesize that the most reliable

FS method is able to reproduce the top most discriminative features

identified by other methods, thereby achieving the highest consensus

with other FS methods . The most appealing characteristic of the

proposed approach is that it evaluates the importance of a given

FS method while considering a set of FS methods at a given cut-off

threshold K representing the number of top K ranked features

selected to train the classifier (e.g., support vector machine –SVM)

[58] . Given a set of N FS methods, we construct an undirected

fully-connected graph composed of N nodes, where each node rep-

resents a FS method, and each edge connecting two nodes captures

their relationship in a particular trait (reproducibility, accuracy,

similarity, or stability). Each graph is represented as a similarity

matrix ( Fig. 3 ). Ultimately, by averaging the similarity matrices of

the constructed three graphs, we get the final FS-to-FS similarity

matrix S . 
.1.1. FS-to-FS feature reproducibility matrix construction 

Given a set of N FS methods F = { F S 1 , . . . , F S N } , we construct

 graph G K = (V K , E K ) . V K denotes the set of nodes, each nesting

 FS method in F , while E K represents weighted edges, which

odels the pairwise overlap in top K features among FS methods.

ach graph G K is represented as a similarity matrix S K ( Fig. 3 ). By

arying the cut-off values K , we define a set of graphs G (or multi-

raph) that model the overlap between FS methods at different

alues. Next, for easily merging the generated multiple graphs, we

epresent each G K as a similarity matrix S K ( Fig. 3 ), where each ele-

ent S K ( i, j ) denotes the overlap in top K ranked features between

S methods i and j . We generate an average similarity matrix S̄

y merging all similarity matrices across all thresholds, thereby

apturing the average FS method consensus with other methods

 Fig. 3 ). 

.1.2. FS-to-FS accuracy similarity matrix construction 

Since classification accuracy influences the credibility of the

roduced distinctive features, we propose to model the relation-

hip between FS methods in terms of similarity in average classi-

cation accuracy. Hence, we define an average accuracy similarity

atrix Ā , where the cost Ā (i, j) of an edge connecting two nodes

 and j is defined as Ā (i, j) = exp (−| ̄a i − ā j ) | /σA ) , where ā i rep-

esents the average accuracy of FS method i at different cut-off

hresholds. In our experiments, σ A is set to 10 for range normal-

zation. 

.1.3. FS-to-FS stability matrix construction 

Having a performant classifier and an overall good accuracy in

he classification results is important; however when dealing with

iomarkers, reproducibility is crucial. Results need to be valid for

very subject. A few studies have been carried out [36] highlight-

ng the importance of a FS method’s stability for the reproducibil-

ty of the results for a specific pair of FS methods. One way to bet-

er identify reproducible features is to further leverage the stability

core which models the robustness of the features selected by a

S method. Similarly to building S̄ by averaging multi-graphs at

ifferent feature numbers, we introduce a third graph, represented

y a matrix K̄ . This is an average of stability matrices produced at

ifferent numbers of top ranked features. Each element ( i, j ) in a

tability matrix denotes the normalized Kuncheva stability score

59] ) of two FS methods FS i and FS j . 

Finally, we integrate all Ā , S̄ and K̄ using element-wise multipli-

ation to output the final FS similarity matrix S = Ā × S̄ × K̄ ( Fig. 3 ).

.2. Identifying most reproducible FS method 

In graph theory, one can determine the importance of a node

n a graph using centrality measure [60] . The concept of node cen-

rality aims to quantify node importance within a graph [61] . Inter-

stingly, such a concept has not been widely explored outside the

eld of social network analysis [62,63] . Node centrality presents a

owerful tool in measuring the relevance of a node in a graph. To

olve our problem, we bring the so-called graph centralities into

he identification process of the most reproducible FS method.

pecifically, we propose to use centrality measures on the esti-

ated FS adjacency graph matrix S , taking into account the signif-

cance of FS methods in reproducibility with respect to each other.

o the best of our knowledge, our approach is the first to explicitly

dopt centralities for ‘best’ FS method selection. As highlighted in

ection 2.2 , existing methods tend to rely on FS cherry-picking by

omparing their performances without modeling or exploring their

ntrinsic topological relationships. 

We formalize the definition of feature selection method repro-

ucibility below. 
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Fig. 3. Proposed FS-Select pipeline for data-specific feature selection method identification. Given a particular data view, we define multiple graphs, each represented as a 

similarity matrix modeling the consensus in top K ranked features among other selection methods. Next, we define an accuracy similarity matrix measuring the pairwise 

difference in average accuracy between FS methods and a stability matrix where each element denotes the Kuncheva stability score between two FS methods to boost the 

reproducibility of the selected features. By merging the reproducibility, accuracy and stability matrices, we generate a final matrix S . The best FS method for the dataset 

of interest is identified as the node with the highest centrality in S , thereby allowing to identify the most reproducible features distinguishing between two brain states 

(e.g., healthy vs disordered states). To evaluate the reproducibility power of FS-Select, we assess the binary and weighted overlaps in identified features by FS-Select using 

different cross-validation (CV) strategies. The circular graphs display the top 10 brain connectivities (features) selected by each CV strategy. A circular edge connects two 

brain regions and its strength represents the discriminative power of the selected brain connectivity. The three rows in the bottom matrices respectively represent the binary 

and weighted overlap in selected features using LOO, 5-fold and 10-fold CV strategies, respectively. Both matrices give insights into the reproducibility of a given FS method. 
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Table 1 

Major mathematical notations used in this paper. 

Mathematical 

notation Definition 

n v Number of views 

V Brain network (single view) in R n ×n 

v k Feature vector for each brain network view k 

K Cut-off threshold representing the top ranked features 

N Number of FS methods 

G K Graph representing feature overlap across FS methods 

for top K ranked features 

V K Set of nodes 

E K Weighted edges 

G Multi-graph representing feature overlap across FS methods 

at different cut-off thresholds K 

S K Similarity matrix 

S̄ Average feature overlap similarity matrix 

Ā Average accuracy similarity matrix 

r K Features’ ranking for FS methods K 

K̄ Average stability similarity matrix 

S Holistic FS graph adjacency matrix 

( v i ) Node corresponding to FS method FS i 
d ( v i , v k ) The shortest distance between nodes v i and v k 
c i Centrality measure for FS method FS i 
( v � ) Node with the highest centrality in G
M b Binary FS reproducibility matrix 

M w Weighted FS reproducibility matrix 

n f Number of selected features 

P Number of cross-validation strategies 

w 

K 
p Ranking score for threshold K and CV strategy p 
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2 http://adni.loni.usc.edu/ . 
Definition of FS method reproducibility at threshold K : We define

the reproducibility of a feature selection method FS i at threshold

K as the average overlap ratio of its shared top K ranked features

with other FS j methods in F . 

Definition of average FS method reproducibility: We define the av-

erage reproducibility of a feature selection method FS i as its av-

erage reproducibility ratio when varying the threshold K within a

pre-defined internal. 

In what follows, we use ‘average reproducibility’ to quantify the

reproducible power of a given FS method. 

Using closeness centrality, the most central nodes are strongly

connected to their neighbors. In our case, this means that the FS

method which shares the largest number of features (i.e., strongest

connections) with other node graphs (i.e., FS methods) has the

highest reproducible power. It naturally follows from the defini-

tion of FS reproducibility that the most reproducible FS meth-

ods are nodes in S̄ with highest closeness centrality in weighted

graph. 

Hence, to identify the most reproducible FS method, we identify

the node v � with the highest closeness centrality c(v � ) [64] in the

holistic graph S defined as follows: 

c ( v � ) = max 
i 

c ( v i ) = max 
i 

∑ 

v k ∈ V −{ v i } 

N − 1 

d(v i , v k ) 
(1)

where d ( v i , v k ) denotes the shortest distance between nodes v i and

v k . By inverting the similarity between two nodes, we intuitively

measure their distance. 

Inspired by graph analysis theory, we define c i as the close-

ness centrality measure, indicating to which degree a node is able

to spread information to other nodes in a relatively short time.

Specifically, we assign a score c i for each FS i in S , that quanti-

fies the consensus in reproducibility, stability, and accuracy among

other methods. The final FS method is selected as the one with

the highest closeness centrality in S (i.e. the one which is closest

to other FS techniques). It is marked with a � in the S graph dis-

played in Fig. 3 . 
.3. Identifying most reproducible connectomic features 

Once the most reliable FS method is identified, we train an

VM classifier using the top K selected features to reveal the most

iscriminative ones. We then investigate more deeply the repro-

ucible features by plotting the top n f most relevant connectomic

eatures using a circular graph which also displays the name of the

est FS method and its average accuracy for this particular data set

 Fig. 3 ). 

.4. Evaluation of FS-Select using different cross-validation strategies 

In order to evaluate the reproducibility of FS-Select and have

 better assessment of its effectiveness, we train a linear SVM

lassifier using P Cross-Validation (CV) strategies. To illustrate the

imilarity between FS methods in terms of the three landmark

raits (i.e., reproducibility, accuracy, and stability), we created both

 binary M b and a weighted matrix M w 

( Fig. 3 ). Each element

n the first matrix simply includes the top K feature overlap (in

) between two different CV strategies p and p ′ : M b (p, p ′ ) =
( 
∑ 

r K p ∩ r K 
p ′ ) ×100 

K , where r K p denotes the ranking vector for top K fea-

ures using the p th CV strategy. To generate the weighted stability

atrix M w 

, we first identify the top K ranked features between CV

trategies p and p ′ , then we average their corresponding ranking

cores w 

K 
p and w 

K 
p ′ produced by CV p and p ′ , respectively, to pro-

uce M w 

( p, p ′ ). 

. Results and discussion 

.1. Evaluation datasets 

We evaluated FS-Select on a multi-view small-scale connec-

omic dataset (late mild cognitive impairment vs Alzheimer’s dis-

ase) and large-scale dataset including autistic vs healthy subjects

s follows. 

.1.1. Multi-view connectomic feature extraction 

Each brain is represented by a set of n v networks { V i } n v i =1 
, each

ncoding a particular view of the connectional brain construct. To

rain our classification model based on the identified FS method,

e define a feature vector v k for each brain network view V k ,

hose elements belong to the off-diagonal upper triangular part

f the corresponding connectivity matrix ( Fig. 3 ). 

.1.2. Small-scale dataset 

To distinguish between patients diagnosed with Alzheimer’s

isease (AD) and those with late mild cognitive impairment

LMCI), we used leave-one-out (LOO) cross validation on 77 sub-

ects (41 AD and 36 LMCI) from ADNI data, 2 each with structural

1-w MR image [65] . We reconstructed both right and left cortical

emispheres for each subject from T1-w MRI using FreeSurfer soft-

are [66] . Next, we parcellated each cortical hemisphere into 35

ortical regions using Desikan-Killiany Atlas [66,67] . We generated

wo morphological brain networks [1,4] derived from M = 2 cor-

ical views: maximum principal curvature brain view and the mean

ortical thickness brain view . For each cortical attribute, we com-

ute the strength of the morphological brain network connection

inking i th region of interest (ROI) to the j th ROI as the absolute

ifference between the averaged attribute values in both ROIs [1,4] .

hen, we extract a feature vector from the off-diagonal triangular

art of each brain view matrix. 

http://adni.loni.usc.edu/
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.1.3. Large-scale dataset 

For generalizability and scalability, we evaluated FS-Select on

 large-scale multi-view connectomic dataset comprising 341 sub-

ects including 155 diagnosed with autism spectrum disorder (ASD)

nd 186 normal control (NC) subjects from ABIDE dataset. 3 Multi-

iew morphological brain networks and corresponding feature vec-

ors were extracted using the aforementioned strategy as also in

3,68] . 

.2. Results and Discussion 

.2.1. FS methods and training 

For building our FS pool, we used the Feature Selection Library

69] provided by Matlab. We selected 7 FS methods: relieff [70] ,

utInfFS [71] , laplacian [72] , L0 [73] , UDFS [74] , llcFS [75] , and cFS

76] . We adopted a leave-one-out cross-validation (CV) strategy

o train each FS in combination with an SVM classifier. For FS

ethods that required parameter tuning, we used nested CV

relieff, UDFS). For each FS method, we evaluated the performance

f the SVM classifier on different numbers of top K selected

eatures varying from 10 to 100 (with a step size of 10 features).

t first sight, it seems that the graphs tend to confirm our initial

ypothesis claiming that depending on the data, the quality of one

pecific FS method varies ( Fig. 2 ). In the next step, we explore the

ifference of rankings between the FS methods and identify the

ne with the most reproducible features and an overall satisfactory

ccuracy and stability. 

.3. FS-Select performance 

.3.1. Small-scale dataset (LMCI vs AD) 

Fig. 4 illustrates the weighted FS similarity matrix and its

orresponding graph as well as the reproducible features identified

y FS-Select. This figure confirms our hypothesis that the best FS

ethod for one data type might not be optimal for another one.

or instance, relieff was identified for view 1 LH connectomic data

ith a classification accuracy of 61.03%, while L0 was identified for

iew 2 LH connectomic data with a classification accuracy of 70.3%.

urthermore, we note that there is a significant difference in the

ccuracy between the hemispheres ( ≈ 70% vs ≈ 40%). The most

iscriminative morphological connectional features included the

orphological connections between (i) [Superior parietal cortex

29) ↔ the Insula cortex (35)] and (ii) [Caudal anterior-cingulate

ortex (2) ↔ Unmeasured corpus callosum (4)]. The pair of ROIs

Caudal middle frontal gyrus (3) ↔ the Unmeasured corpus callo-

um (4)] and [Unmeasured corpus callosum (4) ↔ Cuneus cortex

5)] were also regularly selected. Regions 1 (Bank of the superior

emporal sulcus), 2 (Caudal anterior-cingulate cortex) and 35

Insula cortex) were also identified as morphological hubs. 

.3.2. Large-scale dataset (ASD vs NC) 

Fig. 5 illustrates the results obtained for the larger dataset (ASD

s NC). We observe some fundamental differences and similarities

etween Figs. 4 and 5 that help better investigate the behaviour

f FS-Select. First, we note that the four selected FS methods are

ifferent (laplacian, relieff, cfs, mutinffs) and thus do not seem to

epend of the brain connectomic view. Likewise, we do not no-

ice a significant difference in the accuracy across views ( ≈ 52%

or all view). When examining the top reproducible features for

his dataset, the morphological connection [Superior parietal cor-

ex (29) ↔ Insula cortex (35)] is always selected while [Caudal

nterior-cingulate cortex (2) ↔ Unmeasured corpus callosum (4)]

nd [Bank of the superior temporal sulcus (1) ↔ Entorhinal cortex
3 http://fcon _ 10 0 0.projects.nitrc.org/indi/abide/ . 

i  

w  

n  
6)] appear as relevant features. We also note that the most dis-

riminative features identified for ASD differ from those identified

or AD dataset. Overall, this might indicate that FS-Select is capable

f selecting relevant connectomic features for a specific disorder. 

.4. Evaluation of FS-Select using multiple CV strategies 

FS-Select identifies the best FS method from a given FS pool

nd is capable of revealing the most reproducible and discrimi-

ative features disentangling two classes in a biomedical dataset

f interest. However, to the best of our knowledge, there is no

onsensus in biomedical data analysis state-of-the-art on how to

valuate the reproducibility of features based on machine learn-

ng. As a potential evaluation criterion, we leverage different cross-

alidation strategies to demonstrate feature reproducibility against

iverse perturbations of the training set. In particular, we apply FS-

elect using three CV strategies: leave-one-out, 5-fold and 10-fold

V. With the results presented in Figs. 6 and 7 , we aim to highlight

wo key aspects of FS-Select: 

• The impact of the stability on the results (i.e., the selected FS

method and identified connectomic features). 
• The reproducibility of the identified features by exploring their

overlap across different CV strategies. 

.4.1. Identified most reproducible morphological brain connectivities 

istinguishing between AD and LMCI brain states. 

FS-Select identified cfs as important FS method as it is selected

0% across all experiments (only relieff and L0 were selected

or views 1 and 2). The circular graphs display the top most

iscriminative reproducible morphological connectivities between 

rain regions differentiating between AD and LMCI brain states.

he most reproduced morphological connectional features across

he three CV strategies include connections between: [Caudal

nterior-cingulate cortex (2) ↔ Unmeasured corpus callosum (4)]

nd [Superior parietal cortex (29) ↔ Insula cortex (35)] which are

omparable to the ones discovered earlier. When excluding the

tability graph, nodes 1 (Bank of the superior temporal sulcus)

nd 2 (Caudal anterior-cingulate cortex) lose their weight and the

ost reproducible connectional feature becomes [Superior parietal

ortex (29) ↔ Insula cortex (35)]. From the CV similarity matrices

isplayed in Fig. 7 , we notice that LOO and 10-fold CV strate-

ies present the highest overlap (100%) in reproducing exactly the

ame 10 most discriminative features as shown in the weighted CV

imilarity matrices. 

.4.2. Identified most reproducible morphological brain connectivities 

istinguishing between ASD and NC brain states 

For this dataset, while cfs was only selected once, relieff and

aplacian were frequently selected by our method. Fig. 6 identifies

Superior parietal cortex (29) ↔ Insula cortex (35)] as the top

ost reproducible connectional feature shared between different

V strategies. When including stability, the connectivities linking

he Bank of the superior temporal sulcus (1) with Entorhinal

ortex (6 and with Caudal middle frontal gyrus (3) are identified

s most discriminative. When stability is not included to produce

he final S matrix, we observe that region 1 (Bank of the superior

emporal sulcus) is not frequently selected. On the contrary, region

 (Caudal anterior-cingulate cortex) appears more regularly. The

ame pattern is reproduced when stability is not included and

ore nodes are selected only once and graphs look less similar.

ncluding stability tend to increase the number of commonly se-

ected features across CV strategies. Overall, the displayed circular

raphs look more similar and they have more important features

n common. From the CV similarity matrices displayed in Fig. 6 ,

e can conclude that the most discriminative morphological con-

ections identified by the 10-fold and LOO CV strategies are most

http://fcon_1000.projects.nitrc.org/indi/abide/
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Fig. 4. AD vs LMCI - Top 10 reproducible discriminative features identification using the best identified feature selection (FS) method for each network brain view data. 

Selected FS methods ( � ), corresponding classification accuracy, and top reproducible features varied across data types and right and left hemispheres (RH and LH) for 

Alzheimer’s Disease (AD) vs Late Mild Cognitive Impairment (LMCI) classification task. 
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Fig. 5. ASD vs NC - Top 10 reproducible discriminative features identification using the best identified feature selection (FS) method for each network brain view data. Selected FS 

methods ( � ), corresponding classification accuracy, and top reproducible features varied across data types in the right hemisphere (RH) for Autism Spectrum Disorder (ASD) 

vs Normal Control (NC) classification task. 
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Fig. 6. Circular graphs and CV-to-CV similarity matrices representing the top 10 reproducible discriminative features for ASD/NC dataset datasets and using three cross- 

validation strategies (leave-one-out, 5-fold, and 10-fold) with and without the stability score. Each CV is tested with and without the inclusion of the stability criteria. The 

CV similarity matrices on the right present the overlap (in %) between the top 10 features discovered using a pair of CV methods. The CV matrices on the left represent the 

overlap (in %) between the top 10 features discovered by two CV methods weighted by their ranking scores. 
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reproducible since (LOO,10-CV) present the highest overlap (100%)

between pairs of CV strategies as shown in the weighted CV

similarity matrices for brain view 3. 

4.5. Clinical findings of FS-Select 

Table 2 displays the two most discriminative and reproducible

morphological connections identified for each dataset and each
rain view. For more visual display, Figs. 4–6 show that regardless

f the input dataset and brain view, one connectional feature was

onsistently selected: [Superior parietal cortex (29) ↔ Insula cor-

ex (35)]. Both cortical regions were reported in previous studies

n which AD and ASD disorders [77–80] . 

For AD vs LMCI dataset, we conclude that connectional features

Caudal anterior-cingulate cortex (2) ↔ Unmeasured corpus callo-

um (4)] and [Caudal anterior-cingulate cortex (2) ↔ Entorhinal
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Fig. 7. Circular graphs and CV-to-CV similarity matrices representing the top 10 reproducible discriminative features for LMCI/AD dataset datasets and using three cross- 

validation strategies (leave-one-out, 5-fold, and 10-fold) with and without the stability score. Each CV is tested with and without the inclusion of the stability criteria. The 

CV similarity matrices on the right present the overlap (in %) between the top 10 features discovered using a pair of CV methods. The CV matrices on the left represent the 

overlap (in %) between the top 10 features discovered by two CV methods weighted by their ranking scores. 

Table 2 

Two most discriminative and reproducible features (i.e., brain connectivities) identified across different cross-validation strategies by the selected FS method. 

Dataset Most discriminative morphological connectivities 

AD vs LMCI Caudal anterior-cingulate cortex (2) ↔ Unmeasured corpus callosum (4) Superior parietal cortex (29) ↔ Insula cortex (35) 

AD vs LMCI Caudal anterior-cingulate cortex (2) ↔ Entorhinal cortex (6) Superior parietal cortex (29) ↔ Insula cortex (35) 

ASD vs NC Bank of the superior temporal sulcus (1) ↔ Entorhinal cortex (6) Superior parietal cortex (29) ↔ Insula cortex (35) 

ASD vs NC Caudal anterior-cingulate cortex (2) ↔ Caudal middle frontal gyrus (3) Superior parietal cortex (29) ↔ Insula cortex (35) 
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cortex (6)] are identified as most discriminative and reproducible.

Cortical region 2 corresponding to the Caudal anterior-cingulate

cortex is found to be an important hub region, which is in line

with other studies investigating AD [81] . 

For ASD vs NC dataset, connectional features including [Caudal

anterior-cingulate cortex (2) ↔ Caudal middle frontal gyrus (3)]

and [Bank of the superior temporal sulcus (1) ↔ Entorhinal cor-

tex (6)] were detected as the most reproducible and discrimina-

tive. These morphological connections involved cortical regions re-

ported in previous studies on Autism Spectrum Disorder [82–84] . 

The identified regions could be significant biomarkers and may

help in the diagnosis and the treatment of both neurological con-

ditions. 

4.6. Performance of FS-Select and limitations 

FS-Select achieved our primal objective of identifying the most

reproducible and discriminative connectomic features for the de-

tection of a neurological brain disorder of interest with good clas-

sification accuracy. We demonstrated the feature reproducibility

power of FS-Select against different perturbations of the training

set by adopting three different cross-validation strategies. FS-Select

selected the same connectional biomarkers using at least 2 differ-

ent CV out of 3. FS-Select revealed the importance of specific brain

regions that were repeatedly identified as discriminative for all

different cross-validation strategies including the bank of the supe-

rior temporal sulcus, caudal anterior-cingulate cortex, and cuneus

cortex. This might indicate that these landmark regions should be

primarily considered when investigating the effect of late dementia

on brain morphology. 

Although FS-Select has many appealing aspects, it has a few

limitations that we intend to address in our future work: 

• Among the pool of seven FS methods, only five were regularly

selected as the most suitable for the evaluation datasets. UDFS

and llcFS were never selected. In this work, we have only tested

our framework on two different datasets. One would need to

evaluate FS-Select on different datasets to reliably assess the

potential of used FS methods. 
• When investigating the most reproducible connectomic fea-

tures, we have only selected the top 10 features. One can ex-

plore a larger number of features as neurological disorders

might alter brain connections in different numbers depending

on the severity of the condition and its stage. 
• Each FS method outputs a ranking and weight vectors for fea-

tures. So far, we have only considered the rank of the features

for selecting the most discriminative and reproducible ones.

One can also integrate the feature weight into the estimation

of the reproducibility graph. 
• The computational time of identifying the most reproducible

FS method depends on the time complexity of the utilized

FS methods as well as the data size. This can be potentially

solved by using parallel computing where different FS methods

are trained simultaneously, hence time complexity is not a big

issue here. Besides, recent state-of-the-art FS methods have

quite reasonable time complexity (e.g., time complexity of

infinite feature selection of the quadratic order). Ideally, the

ultimately selected FS method will be computationally least

expensive, but in biological data patterns recognition tasks such

as biomarker discovery for effective treatment of neurological

disorders, reproducibility tips the balance compared to compu-

tation time. This paper does not focus on the time complexity

of the utilized FS methods, but rather on the reproducible

power of each FS method in selecting the most reproducible
features. t  
.7. Future work and improvements 

There are several future directions to explore to further im-

rove our seminal work. First , instead of pre-defining a similarity

atrix modeling the relationship between FS methods in terms of

op ranked feature consensus, we can instead learn these associ-

tions in a more generic way. Second , we will evaluate FS-Select

n multiple connectomic datasets, including functional and struc-

ural connectomes. Third , ideally, the FS method giving the best

lassification accuracy would identify the most discriminative and

eproducible features. We aim to further improve our framework

o identify the data-specific FS method that satisfies both crite-

ia. Fourth , in this study, we only focused on using FS-Select to

emonstrate feature reproducibility within a dataset of interest. In

ur future work, we will investigate the reproducibility potential

f our method across independent datasets for a specific disorder

cquired from different medical centers. Fifth , how to evaluate

he reproducibility of a given feature selection method is an open

rea of research that requires the development of more advanced

athematical tools for accurate and comprehensive evaluation and

omparison. 

. Conclusion 

While the majority of feature selection methods focus on boost-

ng prediction accuracy, in this work, we address the issue of se-

ecting the best FS method for a dataset of interest to boost feature

eproducibility. Particularly, we introduced FS-Select, a method ca-

able of identifying the best feature selection method to discover

he most reproducible and reliable subset of features that distin-

uish between two groups (e.g., healthy and disorders brains). Us-

ng both small-scale and large-scale multi-view brain connectomic

atasets, we demonstrated the reproducibility power of the FS

ethod chosen by FS-Select using different cross-validation strate-

ies. We have also discovered different reproducible connectional

eatures fingerprinting the morphology of the autistic and de-

ented brains. Since this is a first initiative in solving the problem

f finding the most reproducible FS method for a particular dataset

f interest, we only explored the pairwise relationship between

ifferent FS methods encoded in a multigraph. In our future work,

e will investigate the high-order relationships between different

S methods using hypergraph learning techniques [85] , where we

earn how to model the relationship between subsets of FS meth-

ds to boost the reproducibility of discriminative data-driven pat-

erns. Although proving mathematical claims about the behavior of

ven simple programs appears to be very difficult [86] , providing a

roof of correctness of FS-Select will lay the foundation for select-

ng and even designing more rigorously reproducible FS methods.

ne can also investigate alternative FS methods such as efficient

nd robust feature selection via joint l 21 norms minimization

87] and more [15] . 
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